Acta Cryst. (1991). C47, 2670–2672

Structure of Tris(3,3',4,4'-tetramethyl-2,2',5,5'-tetraselenafulvalenium) Phosphododecatungstate: (TMTSF)₃PW₁₂O₄₀

By Lahcène Ouahab* and Daniel Grandjean

Laboratoire de Chimie du Solide et Inorganique Moléculaire, URA 254 CNRS, Université de Rennes I, 35042 Rennes CEDEX, France

AND MUSTAPHA BENCHARIF

Institut de Chimie, Université de Constantine, Algeria

(Received 26 February 1991; accepted 29 April 1991)

 $3C_{10}H_{12}Se_4^+.PW_{12}O_{40}^{3-}$ $M_r = 4221.29$ Abstract. monoclinic, $P2_1/n$, a = 11.733 (5), b = 18.461 (5), c =16.223 (6) Å, $\beta = 98.05$ (4)°, V = 3479.2 Å³, Z = 2, $D_x = 4.03 \text{ g cm}^{-3}$, λ (Mo K α) = 0.71073 Å, μ = 265.07 cm^{-1} , F(000) = 1495, T = 293 K, R = 0.053based on 3152 observed reflections with $I \ge 3\sigma(I)$. The crystal structure is built from $PW_{12}O_{40}$ units located at the origin of the lattice and stacks of fully oxidized TMTSF molecules parallel to the [100] direction. Criss-cross and ring-over-double-bond types of overlap are observed within the organic stack. The Se...Se [3.633 (6) and 3.613 (5) Å] contacts between molecules of the B type are significantly shorter than the corresponding (4 Å) van der Waals separation. The contacts between molecules A and Bare $Se2 \cdot \cdot \cdot Se5 = 3.898$ (5) and $Se3 \cdot \cdot \cdot Se5 = 3.909$ (5) Å. Additionally, the Se-O contacts range from 3.00 to 3.31 Å indicating strong organic-inorganic interactions.

Experimental. The title compound was obtained on a platinum wire electrode by anodic oxidation of the organic donor $(2.10^{-3} M)$ in a mixture of dimethylformamide (85%) and dichloromethane (15%) under low constant current ($I = 0.95 \mu A$) in the presence of $(Et_4N)_3PW_{12}O_{40}$ $(10^{-2} M)$ as supporting electrolyte. A black needle crystal with approximate dimensions $0.08 \times 0.08 \times 0.15$ mm was selected for intensity data collection using an Enraf-Nonius CAD-4 diffractometer with graphite-monochromated Mo Ka radiation. Cell dimensions from least-squares refinement from setting angles of 25 centred reflections ($\theta \le 15^{\circ}$). 5752 independent reflections were measured in the range $2 \le 2\theta \le 50^\circ$ with $0 \le h \le 13$, $0 \le k \le 22, -19 \le l \le 19$. The θ -2 θ mode was used with scan width $\Delta \omega = (1 + 0.35 \tan \theta)^{\circ}$ and counter aperture $\Delta l = (2.0 + 0.6 \tan \theta)$ mm. Three standard reflections measured every hour showed no fluc-

tuation in intensities. 3152 reflections with $I \ge 3\sigma(I)$. The intensities were corrected for Lorentz and polarization effects. The absorption correction was applied based on ψ -scan data obtained at the conclusion of intensity-data collection. The minimum and maximum absorption factors were 0.81 and 1.54, with an average value of 0.97. The space group $P2_1/n$ was determined on the basis of systematic extinctions (h0l, h + l = 2n + l and 0k0, k = 2n + 1) and successful refinements. The structure was solved by direct methods and successive difference Fourier syntheses. H atoms placed at computed positions (C-H = 1.0 Å). Full-matrix least-squares anisotropic (β_{ii}) refinement on F (H atoms isotropic, not refined). The O atoms of the disordered PO_4 group and the O8. C7, C11 and C15 atoms were refined isotropically. Final R = 0.053, wR = 0.072, $w = 4F_o^2/[\sigma^2(F_o^2) - (0.07F_o^2)^2]$, S = 1.58, $(\Delta/\sigma)_{\min} = 0.01$, $\Delta\rho_{\max} = 2.37 \text{ e Å}^{-3}$; refined secondary-extinction value g = 3.8568×10^{-8} . Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations were performed on a PDP11/60 and a MicroVAX 3100 computer using the SDP programs (B. A. Frenz & Associates, Inc., 1985).

Final atomic parameters are given in Table 1,[†] bond distances and angles in Table 2. The atomic numbering is shown in Fig. 1. The crystal structure represented in Fig. 2 is built from $PW_{12}O_{40}$ units located at the origin of the lattice, and stacks of TMTSF molecules.

Related literature. The title compound was prepared as part of our investigations on charge-transfer salts comprising organic donors derived from TTF (tetra-

© 1991 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.

[†] Lists of structure factors, anisotropic thermal parameters and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54150 (23 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

wi-oi

Table 1. Atomic coordinates and equivalent isotropic temperature factors $(Å^2)$

Table 2. Bond distances (Å) and bond angles (°)

W6---018

1.92 (3)

$\boldsymbol{B}_{eq} = (4/3) \sum_{i} \sum_{j} \boldsymbol{\beta}_{ij} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$						
	x	У	у	Beq		
WI	0.2152 (1)	-0.06833 (8)	0.15749 (8)	2.52 (3)		
W2	-0.1516 (1)	0.07007 (7)	0.15758 (8)	1.89 (2)		
W3	-0.0784 (1)	-0.11723 (7)	0.15696 (8)	2.02 (3)		
W4	0.1413 (1)	0.11867 (7)	0.15476 (8)	2.28 (3)		
W5	0.0771 (1)	-0.18702 (6)	0.00123 (8)	2.08 (3)		
W6	0.2949 (1)	0.04654 (7)	-0.00117 (8)	2.16 (3)		
Sel	0.1526 (4)	- 0.0498 (2)	0.3944 (2)	3.49 (8)		
Se2	0.1872 (3)	-0.0520 (2)	0.5896 (2)	2.74 (7)		
Se3	0.1281 (3)	0.1276 (2)	0.5905 (2)	2.96 (8)		
Se4	0.0935 (4)	0.1274 (2)	0.3961 (2)	3.42 (8)		
Se5	0.5467 (3)	-0.0761 (2)	0.3968 (2)	3.36 (8)		
Se6	0.4611 (3)	0.0840 (2)	0.3947 (2)	3.46 (8)		
Р	0.0	0.0	0.0	1.3 (2)		
01	0.193 (2)	-0.147 (1)	0.080(1)	4.2 (6)		
O2	0.318 (2)	-0.102 (1)	0.230 (1)	3.1 (5)		
O3	0.075 (2)	-0.098 (2)	0.199 (2)	5.6 (7)		
04	0.305 (2)	-0.025 (1)	0.083 (2)	6.0 (7)		
O5	0.192 (3)	0.023 (1)	0.193 (2)	8.0 (8)		
O6	-0.115 (2)	-0.024 (1)	0.201 (2)	4.0 (6)		
07	0.157 (2)	-0.149 (1)	-0.081(2)	5.0 (6)		
O8	0.000 (2)	0.099 (1)	0.205 (2)	4.1 (6)*		
09	-0.227 (2)	0.103 (2)	0.233 (2)	4.6 (6)		
O10	0.269 (2)	-0.028 (1)	-0.080(1)	4.1 (6)		
011	-0.218 (2)	-0.111 (1)	0.085 (2)	4.7 (6)		
O12	-0.115 (2)	-0.172(1)	0.229 (2)	4.0 (6)		
O13	-0.025 (2)	-0.184 (2)	0.086 (2)	5.3 (6)		
O14	0.251 (2)	0.114 (1)	0.080 (2)	6.7 (7)		
O15	0.209 (2)	0.173 (1)	0.229 (2)	3.9 (6)		
O16	0.057 (2)	0.185(1)	0.083 (1)	4.3 (6)		
017	0.106 (2)	-0.275 (1)	0.001 (1)	2.6 (4)*		
O18	0.432 (2)	0.071 (1)	-0.001 (2)	3.5 (5)		
O19	0.021 (4)	- 0.063 (2)	- 0.054 (3)	2.5 (8)*		
O20	-0.036 (3)	0.066 (2)	- 0.056 (2)	1.4 (7)*		
O21	-0.089 (4)	- 0.015 (3)	0.052 (3)	4 (1)*		
O22	0.123 (3)	0.020 (2)	0.059 (2)	1.3 (7)*		
CI	0.149 (3)	0.002 (2)	0.490 (2)	3.8 (8)		
C2	0.203 (3)	-0.136 (2)	0.452 (2)	3.4 (8)		
C3	0.212 (3)	-0.139 (2)	0.526 (2)	2.4 (7)		
C4	0.132 (2)	0.071 (1)	0.496 (2)	1.8 (6)		
C5	0.086 (3)	0.216 (2)	0.533 (2)	3.0 (8)		
C6	0.074 (3)	0.213 (2)	0.455 (2)	2.5 (7)		
C7	0.213 (4)	- 0.198 (2)	0.392 (3)	4.6 (9)*		
C8	0.252 (3)	-0.199 (2)	0.589 (3)	4.6 (9)		
CY CY	0.046 (4)	0.282 (2)	0.398 (4)	6(1)		
C10	0.085 (3)	0.275 (2)	0.591 (2)	3.5 (9)		
CII	0.503 (3)	0.001 (2)	0.457 (2)	2.3 (6)*		
CI2	0.541 (3)	-0.025 (2)	0.298 (2)	3.1 (8)		
013	0.506 (3)	0.044 (2)	0.299 (2)	2.9 (7)		
C14	0.576 (3)	-0.061 (2)	0.220 (3)	6(1)		
0.5	0.501 (4)	0.097 (2)	0.227 (3)	4.3 (9)*		
		4 D C 11				

* Refined isotropically

thiafulvalene) and inorganic acceptors derived from the polyoxometallates (Ouahab, Bencharif & Grandjean, 1988; Triki, Ouahab, Padiou & Grandjean, 1989). The structural features of the $[PW_{12}O_{40}]^{3-}$ anion are in good agreement with those reported for a fully ordered unit (Brown, Noe-Spirlet, Busing & Levy, 1977). It is well known that the α -Keggin type of anion has the acentric T_d symmetry group. However, as in the present work, some centric (because of orientational disorder) anions have been reported (Attanasio, Bonamico, Fares, Imperatori & Suber, 1990; Evans & Pope, 1984).

The organic stack is constituted by the packing of two independent TMTSF molecules denoted A and B (Fig. 1). Molecule A is centred at the $(\frac{1}{2},0,\frac{1}{2})$ centre of inversion and molecule B is in general position. Molecule B overlaps with another centrosymmetrically related B molecule in a ring-

W1-02 W1-03 W1-04 W1-05 W2-06 W2-07 W2-08 W2-09 W2-010 W3-03 W3-01 W3-012 W3-013 W4-05 W4-014 W4-015 W4-016 W5-01 W5-013 W5-016 W5-017 W6-010 W6-011 W6-014	1.68 (2) 1.94 (3) 1.88 (3) 1.81 (3) 1.90 (2) 1.91 (3) 1.91 (2) 1.72 (3) 1.90 (2) 1.87 (2) 1.87 (2) 1.87 (2) 1.86 (3) 1.95 (3) 1.98 (3) 1.67 (2) 1.87 (2) 1.94 (3) 1.94 (3)	$\begin{array}{c} P019 \\ P020 \\ P021 \\ P022 \\ Se1C1 \\ Se2C3 \\ Se2C3 \\ Se3C4 \\ Se3C4 \\ Se3C5 \\ Se4C4 \\ Se4C6 \\ Se5C12 \\ Se6C11 \\ Se6C13 \\ C1C4 \\ C2C3 \\ C2C7 \\ C3C8 \\ C5C6 \\ C5C10 \\ C6C9 \\ C11C11 \\ C12C14 \\ C13C15 \\ \end{array}$	1.50 (4) 1.55 (4) 1.46 (5) 1.65 (3) 1.83 (4) 1.90 (3) 1.90 (4) 1.95 (3) 1.82 (3) 1.92 (3) 1.82 (3) 1.82 (3) 1.83 (3) 1.85 (3) 1.85 (3) 1.85 (3) 1.85 (3) 1.29 (4) 1.19 (5) 1.52 (5) 1.25 (5) 1.25 (5) 1.25 (5) 1.25 (5) 1.25 (5) 1.44 (5) 1.53 (6) 1.51 (6)
$\begin{array}{c} 01 - W1 - 02\\ 01 - W1 - 03\\ 01 - W1 - 04\\ 01 - W1 - 05\\ 02 - W1 - 03\\ 02 - W1 - 04\\ 03 - W1 - 05\\ 03 - W1 - 04\\ 03 - W1 - 05\\ 04 - W1 - 05\\ 06 - W2 - 07\\ 06 - W2 - 08\\ 06 - W2 - 09\\ 06 - W2 - 09\\ 06 - W2 - 09\\ 06 - W2 - 010\\ 07 - W2 - 08\\ 07 - W2 - 08\\ 07 - W2 - 010\\ 08 - W2 - 010\\ 03 - W3 - 013\\ 03 - W3 - 011\\ 03 - W3 - 012\\ 03 - W3 - 011\\ 03 - W3 - 013\\ 01 - W3 - 012\\ 06 - W3 - 013\\ 01 - W3 - 013\\ 05 - W4 - 016\\ 08 - W4 - 015\\ 05 - W4 - 016\\ 01 - W5 - 07\\ 01 - W5 - 016\\ 01 - W5 - 017\\ 01 - W5 - 016\\ 01 - W5 - 017\\ 07 - W5 - 016\\ 07 - W5 - 016\\ 07 - W5 - 017\\ 07 - W5 - 016\\ 07$	$\begin{array}{c} 101.0 (1) \\ 89.0 (1) \\ 89.0 (1) \\ 154.0 (1) \\ 102.0 (1) \\ 101.0 (1) \\ 104.0 (1) \\ 157.0 (1) \\ 89.0 (1) \\ 89.0 (1) \\ 87.0 (1) \\ 158.0 (1) \\ 87.0 (1) \\ 100.0 (1) \\ 99.0 (1) \\ 102.0 (1) \\ 89.0 (1) \\ 102.0 (1) \\ 89.0 (1) \\ 103.0 (1) \\ 87.0 (1) \\ 158.0 (1) \\ 103.0 (1) \\ 87.0 (1) \\ 158.0 (1) \\ 103.0 (1) \\ 87.0 (1) \\ 158.0 (1) \\ 103.0 (1) \\ 87.0 (1) \\ 158.0 (1) \\ 101.0 (1) \\ 87.0 (1) \\ 101.0 (1) \\ 87.0 (1) \\ 101.0 (1) \\ 87.0 (1) \\ 101.0 (1) \\ 87.0 (1) \\ 103.0 (1) \\ 87.0 (1) \\ 103.0 (1) \\ 103.0 (1) \\ 155.0 (1) \\ 103.0 (1) \\ 155.0 (1) \\ 103.0 (1) \\ 89.0 (1) \\ 101.0 (1) \\ 89.0 (1) \\ 102.0 (1) \\ 89.0 (1) \\ 102.0 (1) \\ 89.0 (1) \\ 102.0 (1) \\ 88.0 (1) \\ 105.0 (1) $	$\begin{array}{c} 010 - W6 - 011\\ 010 - W6 - 014\\ 011 - W6 - 018\\ 011 - W6 - 018\\ 019 - P - 020\\ 020 - P - 021\\ 020 - P - 022\\ 021 - 022\\ $	$\begin{array}{c} 88.0 (1) \\ 155.0 (1) \\ 105.0 (1) \\ 87.0 (1) \\ 101.0 (1) \\ 100.0 (1) \\ 109.0 (2) \\ 109.0 (2) \\ 109.0 (2) \\ 139.0 (1) \\ 138.0 (2) \\ 141.0 (2) \\ 143.0 (2) \\ 143.0 (2) \\ 143.0 (2) \\ 143.0 (2) \\ 138.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 142.0 (2) \\ 139.0 (1) \\ 120.0 (3) \\ 112.0 (3) \\ 120.0 (3) \\ 110.0 (3) \\ 123.0 (3) \\ 111.0 (3) \\ 123.0 (3) \\ 123.0 (3) \\ 112.0 (3) \\ 122.0 (3) \\ 114.0 (3) \\ 122.0 (3) \\ 115.0 (2) \\ 125.0 (2) \\ 125.0 (2) \\ 125.0 (2) \\ 125.0 (2) \\ 100.0 \\ 1$
013	100.0 (1) 99.0 (1) 88.0 (1) 156.0 (1) 87.0 (1) 103.0 (1)	Se5-C12-C13 Se5-C12-C14 C13-C12-C14 Se6-C13-C12 Se6-C13-C15 C12-C13-C15	117.0 (3) 121.0 (3) 122.0 (3) 121.0 (3) 113.0 (3) 126.0 (3)

1.67 (2)

Fig. 1. Constituent molecules and atomic numbering. Numbers in parentheses correspond to W and Se atoms. The intermolecular contacts (Å) are given: $d^{1}(\text{Se1} \cdots \text{Se3}^{i}) = 3.633$ (6), $d^{2}(\text{Se2} \cdots \text{Se4}^{i}) = 3.613$ (5), $d^{3}(\text{Se3} \cdots \text{Se5}^{ii}) = 3.909$ (5), $d^{4}(\text{Se2} \cdots \text{Se5}^{ii}) = 3.898$ (5), $d^{5}(\text{Se6} \cdots \text{O17}^{iii}) = 3.27$ (2), $d^{6}(\text{O18} \cdots \text{O18}^{iv}) = 3.06$ (3). Symmetry code: (i) -x, -y, 1-z; (ii) 1-x, -y, 1-z; (iii) $\frac{1}{2}-x$, $\frac{1}{2}+y$, $\frac{1}{2}-z$; (iv) 1-x, -y, -z.

over-double-bond fashion to form dimers. The latter are separated along the [100] direction by molecule A. The overlaps between molecules A and B are of the criss-cross type (Fig. 2). This arrangement results in short Se...Se (3.60 Å) contacts between molecules of the B type. The contacts between mol-

Fig. 2. Stereoscopic view of the crystal structure.

ecules A and B are equal to 3.90 Å (see Fig. 1). Additionally, strong organic-inorganic interactions are observed: Se1...O3 = 3.29 (3), Se2...O9(-x, -y, 1-z) = 3.00 (2), Se3...O12 (-x, -y, 1-z) = 3.06 (2), Se4...O15 = 3.31 (3), Se5...O17 ($\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$) = 3.25 (2), Se6...O17 ($\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$) = 3.27 (2) Å.

References

- ATTANASIO, D., BONAMICO, M., FARES, V., IMPERATORI, P. & SUBER, L. (1990). J. Chem. Soc. Dalton Trans. 11, 3221–3228.
- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- BROWN, G. M., NOE-SPIRLET, M.-R., BUSING, W. R. & LEVY, H. A. (1977). Acta Cryst. B33, 1038–1046.
- EVANS, H. T. & POPE, M. T. (1984). Inorg. Chem. 23, 501-504.
- OUAHAB, L., BENCHARIF, M. & GRANDJEAN, D. (1988). C. R. Acad. Sci. Paris Ser. II, 307, 749-751.
- TRIKI, S., OUAHAB, L., PADIOU, J. & GRANDJEAN, D. (1989). J. Chem. Soc. Chem. Commun. pp. 1068-1070.

Acta Cryst. (1991). C47, 2672-2674

Structure of Tetraethylammonium Permanganate

BY DONGMOK WHANG, SUNG-KWON CHUNG AND KIMOON KIM*

Department of Chemistry and Center for Biofunctional Molecules, Pohang Institute of Science and Technology and Chemistry Group, Research Institute of Industrial Science and Technology, PO Box 125, Pohang, Korea

(Received 11 March 1991; accepted 1 May 1991)

Abstract. $(C_2H_5)_4N^+$. MnO_4^- , $M_r = 249.19$, monoclinic, $P2_1/c$, a = 7.512 (1), b = 11.103 (1), c = 14.764 (2) Å, $\beta = 91.44$ (1)°, V = 1230.9 (3) Å³, Z = 4, $D_x = 1.34$ g cm⁻³, λ (Mo K α_1) = 0.7093 Å, $\mu = 10.2$ cm⁻¹, F(000) = 528, T = 295 K, final R = 0.047 for 983 reflections [$F_o > 3\sigma(F_o)$]. The average Mn—O bond length in the title permanganate is 1.610 (6) Å

0108-2701/91/122672-03\$03.00

which is similar to the values reported for the potassium and caesium salts.

Experimental. The crystals of the title compound were obtained accidentally from the reaction mixture of $MnCl_2$ and $KMnO_4$ in aqueous solution containing tetraethylammonium bromide. X-ray data for a black oblique crystal ($0.2 \times 0.2 \times 0.07$ mm) mounted on the top of a glass fiber were collected on an

© 1991 International Union of Crystallography

^{*} Author to whom correspondence should be addressed.